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We have been studying the Langevin equation as a means of simulating 
lattice field theories. {1) In its simplest form the Langevin procedure for 
updating a scalar field with action S[~b] is 

= + ( 1 )  

where 
c~S 

A~(x) = - e  a~b(x) - , , /7 ~/(x) (2) 

Here r/ is a random number (usually Gaussian) with (q(x)* ~/(y))=2ax,y 
and e is the step size. Without the noise term the algorithm would be 
simply a technique for finding the minima of S[~b] by the gradient method. 
The noise term simulates quantum fluctuations about these classical con- 
figurations. 

In common with other techniques, the Langevin simulation according 
to (2) will suffer from critical slowing down for large lattices and long 
correlation lengths 4. This is because the components of ~b with highest 
momenta evolve 4 2 times faster than those with the lowest momenta and 
therefore the amount  of computing time required to study the infrared 
structure of configurations on the lattice grows as (volume). 4 2 . 

The remedy to this problem is a technique known as Fourier 
acceleration. One simply chooses a larger step size e for low p relative to 
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high p. The rates of evolution of the different momentum components of 
the field become decoupled and they can all be made to change at the same 
rate. Equation 2 is replaced by 

JO(x) = -k {~(p)k_ ~ ~4(y)5--f-s + ~ . ( p ) }  (3) 

where/"  represents a fast Fourier transform. The algorithm now resembles 
an improved Newton's method for finding the minima of S[~b]. 

In a simulation of the XY model on a 1 6 , 1 6  lattice, results were 
obtained 25 times faster with Fourier acceleration than without it. (1) The 
method works both in the perturbative regime where e(p) is proportional 
to the lattice propagator and in the nonperturbative regime where e(p) 
cannot be calculated but must be chosen from preliminary measurements 
of the decorrelation times of different momentum components. 

Such acceleration can be used in simulating gauge theories as well, 
provided that some sort of complete gauge fixing is applied to the con- 
figurations between updates. Without gauge fixing there is no simple 
correlation between different momenta and different length scales and 
Fourier acceleration becomes useless. This suggests that smooth gauges, 
like 8. A = 0, are the best. 

The gauge that we use is defined by first fixing the configuration into 
an axial gauge, which ensures the gauge invariance of the simulation when 

becomes dependent on p. We then reduce 8 '  A by successive gauge trans- 
formations to some small value. The gauge transformation G(x) is chosen 
to maximize the sum over the lattice of the trace of the link field U,(x). A 
simple gradient algorithm for this procedure suffers again from a kind of 
critical slowing down; the low momentum components of 8.A(p) decay 
much more slowly than the high momentum ones and so the number of 
gauge fixing iterations required grows as the lattice size increases. This 
problem is also alleviated by Fourier acceleration. The size of the gauge 
transformation w(x) {G(x)=exp[ iw(x ) -  T]} is made inversely propor- 
tional to p2. Results on an 84 lattice for QCD show that with Fourier 
acceleration all momentum components of 8.A(p) decay at the same rate, 
providing a considerable increase in the speed of the algorithm. (2) 

Another problem with simulations of QCD on the lattice is the 
inclusion of fermions. The full action for the theory becomes 

S =  Sg[-U]-- t r  In M[U] (4) 

where Sg[U] is the gauge action and M[U] = 7 5 ( D ' y + m ) .  A Langevin 
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update of a link variable U is obtained by multiplying by exp(-if) where 
schematically 

f =  e ( 6U - tr LM c~UJ) + noise (5) 

The tr term is replaced by an estimator 

E 1 t/+ 2 ~ / ~ U  r/q (6) 

which reproduces the correct term when averaged over the Gaussian ran- 
dom variable r/q. 

The evaluation of the term in (6) requires solving M ( U ) t ) =  qq once 
per sweep, which we do with the conjugate gradient algorithm. This again 
suffers from critical slowing down for very small quark masses, and again 
the solution is to invert M in Fourier space. Results on an 8 4 lattice at 
/~ = 6.2 show that one quarter the number of iterations of the algorithm are 
required when Fourier acceleration is used. (2/ 

We conclude that the technique of Fourier acceleration shows great 
promise for the future and will significantly reduce the computation time 
for simulations on large lattices. 
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